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Abstract  

A new formulation of general relativistic kinetic theory, which includes the effects of 
'collisions' in a self-consistent way, is given. It is found that if collision terms are necessary 
in the kinetic equation, then Einstein's field equations must be modified as well. 

Recently, there has been quite some interest in the kinetic approach to 
many-body problems in general relativity (Chernikov, 1962; Lindquist, 
1966; Hakim, 1968; Ehlers et al., 1968; Ipser & Thorne, 1968; Bel, 1969; 
Ipser, 1969a, b). The usual method of deriving the kinetic equation, how- 
ever, obscures an important  feature of  general relativistic kinetic theory; 
namely that if collision terms are necessary in the kinetic equation, then 
Einstein's field equations must be modified as well. 

We shall present here a new derivation which reveals this curious 
phenomenon (due essentially to the non-linearity of  the Einstein equations), 
and which perhaps also gives some insight on the physics of  the gravitational 
plasma. Our method is a straightforward generalization of the Klimontovich 
(1967) approach to plasma kinetic theory. 

Consider, then, a system of N particles,:~ each of mass m, which interact 
only gravitationally. We assume that 'hard collisions' are negligible, that 
is that the four-velocity of  each particle is a continuous (four-vector-valued) 
function of the particle's proper time. The number N of particles is under- 
stood to be large. 

Let the position and four-velocity of  the Ath particle, A = 1 . . . . .  N, be 
denoted by XA~(Sa) and ua"(sA), where sa is the proper time measured along 
the world line of  the Ath particle.w Each particle moves along a geodesic: 

d'*Ae(sA uA"(sAu;(sArL[x(sA] (1) 
dsA 

]" Address after 1 October 1970: School of Theoretical Physics, Dublin Institute for 
Advanced Studies, Dublin 2. 

:[: These 'particles' may, of course, be stars or even galaxies. 
w Greek indices run from 1 to 4, and we shall sometimes denote the partial derivative 

with respect to x" by a~,. Our space-time metric has signature +2. 
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where r'~v are the Christoffel symbols corresponding to the collective 
gravitational field of the remaining particles. 

Define the microscopic orfine-grained distribution function -Y(x, u) by 

where 

o~(x,u) =_ f dsl . . .  dsN fY(x,u;s) (2) 
- o o  

N 
1 

~[x - XA(SA)] S[U -- UA(SA)] fC(X, U; S) -- - - g ( x )  A=, 

with g(x) the determinant of the metric tensor g,v(x). The 8's are four- 
dimensional Dirac delta-distributions; thus we are treating the particles as 
'point particles'. One could conceivably incorporate into the formalism 
finite particles with internal structure, but this seems a bit ambitious at 
present. 

It is convenient to treat ~-  as a distribution function in eight-dimensional 
phase space although, of course, it is non-zero only for u which obey 
uUu, = - 1 .  Call a connected hypersurface in phase space spacelike if  its 
projection into configuration space is a spacelike hypersurface; that is, if 
it consists of a four-dimensional volume in u-space and a spacelike hyper- 
surface in space-time. Clearly, each orbit in the congruence of particle orbits 
in phase space crosses a spacelike hypersurface in phase space at most 
once. An invariant measure on such a hypersurface is d%du, where d% 
is an invariant space-time hypersurface measure and 

du ~- d 4 u~v/-g =- du 1 du 2 du 3 du4 ~/-g 

The meaning of ~ is that the integral over any spacelike hypersurface 
in phase space of the quantity uU~" is equal to the number of particle orbits 
which cross that hypersurface. If  we integrate over all u-space, we get the 
numerical f lux vector? 

Nt~(x) = ( du uUo~(x, u) 
,d 

The energy-momentum tensor for the system of particles, which is just a 
sum of 'matter' energy-momentum tensors, is given by 

Tc'~(x) = m f duut 'u~Y(x,  u) 

One can show, by straightforward calculation [using (1)], that 

0 

(3) 

I" See, for instance, p. 21 of Synge (1957). 
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Hence, from equation (2), 

This is an exact kinetic equation for the microscopic distribution function 
~ .  In fact, it is just an identity. 

The kinetic equation (4), along with Einstein's field equations 

G ~ = -~cT ~ (5) 

with T ~ given by (3), provide an exact description of the system of point 
particles. As they stand, however, these equations are not very useful, for 
~-, T ~ and g~  are all very complicated, randomly fluctuating, entities. To 
get a tractable theory, we must smooth out these quantities by some sort 
of averaging process. 

We shall use an ensemble average, which we denote by ( >. Let 

g~v -- <g~> + ~g~ 

The quantities ~gu, are fluctuations. (Note that, by definition, the ensemble 
average of a fluctuation is zero). Because the ensemble average does not 
involve the variables x ", u ~, it preserves tensorial type. In particular, (gu~> 
are the covariant components of a second-rank tensor, the kernel of which 
we shall denote by (g>: 

<g> t~, =- (g~v> 

The tensor <g> is the average space-time metric; its contravariant com- 
ponents are defined by 

Notice that although (g~> are the contravariant components of a second- 
rank tensor, (g"~> # (g>~", for 

and taking the ensemble average of both sides of this equation yields 

3ta = (g>~ (g~a> + <Sg~, v 8g~a> (6) 

The ensemble average of any product of fluctuations is called a central 
moment; these central moments are intimately related to the correlation 
functions.t We shall set 

<gUy> = <g>,V + h"" 

Notice that if the central moments occurring in equation (6) vanish, then 
so does h. 

-~ As outlined on pp. 57-59 of Klimontovich (1967). 
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For a treatment of fluctuations, it is convenient to define the new distribu- 
tion function 

/ =  ~v/(-g)~ 

The kinetic equation (4) then reads 

u" b-~x u - u" u 1'~ ffuu~ (7) 

and the energy-momentum tensor (3) is 

Tf'~=m f d4u 'v / ( -g)u~'u~ = m  f d4uut'u~f (8) 

If a~ are the covariant components of any second-rank tensor, define 
the functional 

1-'u~.~{a } =- Ot~a~ + O~a M - O~a~,~ 

Defining the fluctuation 3 / o f / b y  

/=</>+3/ 
we can write equation (7) as 

u" - u" u ~ Ft~ ' ~{(g) + 3g}((g ~7) + 3g ~) Ou ~ 

- u~'fft~v,~{(g ) + 3g} ((g &) + 3gr [ ( / )  + 3/]  = 0 

Ensemble averaging this equation, we obtain 

=uUu~'At~ +u~Au (9) 
where 

A,v- -r,..d(g)}h~'7~</) + -r,..d<g)}b-~(3ge'73f) + 

+ (ge~)?-?~q(F,~..e{3g}3 f )  + (-F'.~. e{3g} 3ge~) L ( / )  + 

+ ~u~ (-P""" e{3g} 3ge' 3 / )  

and A~ is a similar expression involving central moments. 
Performing a similar analysis of the Einstein equations (5), with T ~ 

given by (8), one obtains 
<) 
G ~'~ + AG ~ = -~cm f d 4 uu t~ uV( /~  (10) 

where the symbol ( > over any functional of the metric tensor and its 
derivatives means that the functional is to be evaluated for the metric (g),  
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and A G'" is a complicated expression involving central moments, which 
we shall not write out explicitly. It is the necessary modification of the 
Einstein equations alluded to earlier. 

Suppose the system of particles is sufficiently diffuse that correlations 
are negligible (see below). Then the central moments are negligible, and 
(9) and (10) reduce to 

/ ~ <> ~ < > \  
/s v q  | u U - - - u U u ' P  ~ u /'~ ( / )  0 (11) 

G r = --Km f a 4 uu u u ~ ( / )  (12) 

Equation (11) is the general relativistic Vlasov equation.'~ If  one identifies 
( _ ( g ) ) - 1 / 2 ( / )  with the 'macroscopically' defined distribution function of 
other authors, equations (11) and (12) are precisely the equations which 
some of these authors have applied to diffuse gravitational plasmas. 

Correlations will be important for a system in which there are many 
close encounters, that is, configurations in which the behavior of some 
small set of particles depends more on the parameters of those particles 
than on the collective gravitational field of the plasma as a whole. Such 
a situation is characterized by large deflections of some particles over a 
relatively short proper path length. 

Clearly for the universe in its present state, regarded as a gravitational 
plasma of galaxies, correlations are negligible. In earlier states of the 
universe, though, correlations probably played an important role. In in- 
dividual galaxies, treated as stellar gravitational plasmas, correlations are 
probably largely negligible,~ but in questions of galactic cosmogony correla- 
tions may be significant. Certainly, if one wishes to apply this theory to 
the structure of individual stars, one cannot neglect correlations. 

Let us, then, reconsider equations (9) and (10), this time for a system 
in which there are many close encounters; the central moments (that is, 
A,~, A, and AG m') now cannot be neglected. One can, as some authors 
have done, replace the right-hand side of (9) by a phenomenological colli- 
sion term. But it is not then consistent to assume that A G .~ is negligible, 
and phenomenological reasoning gives no clue as to what it should be. 

A consistent approach would be to generate [as in electromagnetic plasma 
kinetic theory (Klimontovich, 1967)] from equations (5) and (7) an infinite 
set of coupled equations for the central moments of all orders.w For an 
electromagnetic plasma, one can usually justify neglecting in these equa- 
tions all but the lowest-order central moments, which reduces the infinite 
set of equations to a finite (even small) set. Because of the absence in a 

t It is usually referred to in the literature as the '(collisionless) Boltzmann equation', 
but from our point of view the term 'Vlasov equation' is more appropriate. 

:~ See, for instance, the estimate of ter Haar (1969), which is based upon Newtonian 
gravitation. 

w The order of a central moment is its order as a formal multinomial in the fluctuations. 
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gravitational plasma of  Debye screening, one must  proceed in this case with 
some circumspection. Indeed, with N equal to 10 or 24, and in the New- 
tonian limit, solutions obtained by numerical integration (van Aldaba,  
1968) indicate that  multiple close encounters tend to be more impor tant  
than binary ones. This would indicate that the higher-order central moments  
cannot  be neglected. However,  as remarked by ter Haar  (1969), it is not  
at all clear to what  extent one can infer the behavior o f  large N systems 
f rom the behavior o f  small N systems. 

This rather difficult problem deserves thorough study, for, as indicated 
above, correlations are likely to play an important  role in many  interesting 
physical problems, and consistent solutions of  these problems will require 
some knowledge of  the correlation term A G ~v. 
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Erratum 

Vol. 3, No. 3 (1970), pp. 205-231. Darryl Leiters' paper was received 15 November 
1969 and not 1970 as stated. 


